Home

www.nortonkit.com 18 अक्तूबर 2013
Digital | Logic Families | Digital Experiments | Analog | Analog Experiments | DC Theory | AC Theory | Optics | Computers | Semiconductors | Test HTML
Direct Links to Other Digital Pages:
Combinational Logic: [Basic Gates] [Derived Gates] [The XOR Function] [Binary Addition] [Negative Numbers and Binary Subtraction] [Multiplexer] [Decoder/Demultiplexer] [Boolean Algebra]
Sequential Logic: [RS NAND Latch] [RS NOR Latch] [Clocked RS Latch] [RS Flip-Flop] [JK Flip-Flop] [D Latch] [D Flip-Flop] [Flip-Flop Symbols] [Converting Flip-Flop Inputs]
Alternate Flip-Flop Circuits: [D Flip-Flop Using NOR Latches] [CMOS Flip-Flop Construction]
Counters: [Basic 4-Bit Counter] [Synchronous Binary Counter] [Synchronous Decimal Counter] [Frequency Dividers] [Counting in Reverse] [The Johnson Counter]
Registers: [Shift Register (S to P)] [Shift Register (P to S)]
The 555 Timer: [555 Internals and Basic Operation] [555 Application: Pulse Sequencer]
The D Flip-Flop

The edge-triggered D flip-flop is easily derived from its RS counterpart. The only requirement is to replace the R input with an inverted version of the S input, which thereby becomes D. This is only needed in the master latch section; the slave remains unchanged.

One essential point about the D flip-flop is that when the clock input falls to logic 0 and the outputs can change state, the Q output always takes on the state of the D input at the moment of the clock edge. This was not true of the RS and JK flip-flops. The RS master section would repeatedly change states to match the input signals while the clock line is logic 1, and the Q output would reflect whichever input most recently received an active signal. The JK master section would receive and hold an input to tell it to change state, and never change that state until the next cycle of the clock. This behavior is not possible with a D flip-flop.

The edge-triggered D NAND flip-flop is shown below.






Edge-triggered D NAND flip-flop



All pages on www.nortonkit.com copyright © 1996, 2000-2009 by Er. Rajendra Raj
Please address queries and suggestions to: nortonkit@gmail.com